
1

2

3

That is my advertised agenda, but I might skip about a bit

The idea is to share observations gleaned from experience of using systems that have been upgraded to V11.1

It is not going to present any blinding insights into why it works, or doesn’t work

4

The advantage of column-organized tables over row-organized is that far less data needs to be

retrieved for a query to be satisfied. This is particularly aimed at OLAP / BI queries where large

volumes of data need to be processed to return the result set; often aggregated into more

compact, summarized details. With column-organized tables only the pages that contain the

columns requested by the query will be retrieved. Data skipping will further reduce the result set

by eliminating pages that do not match the predicates from the WHERE clause. And the data

will be significantly compressed, both on disk and in memory to compact the data even further.

So, here’s a (very) simple illustration of a table and its data

10

With a row-based table the ‘area’ of data that the query would have to access is shown by the

shaded area

11

But if it was column-organized, the same query would access the shaded area shown

Bearing in mind that besides the reduced number of pages that are being retrieved, the column-

organized data is compressed using routines that can offer 10-fold improvements over pre 10.5

algorithms, and that the database engine will be taking advantage of hardware capabilities (e.g.

Parallel vector processing, multi-core parallelism and single instruction, multiple data (SIMD)

parallelism) to further improve the data processing speed, and you can anticipate very rapid

analytical processing of large volumes of data.

12

And, bearing in mind that besides the reduced number of pages that are being retrieved, the

column-organized data is compressed using routines that can offer 10-fold improvements over

pre 10.5 algorithms, and that the database engine will be taking advantage of hardware

capabilities (e.g. Parallel vector processing, multi-core parallelism and single instruction,

multiple data (SIMD) parallelism) to further improve the data processing speed, and you can

anticipate very rapid analytical processing of large volumes of data.

13

The columnar table queue : The CTQ operator represents a boundary within the DB2® query engine. Operators that appear below the
boundary process data as compressed column-organized vectors and tuples, whereas operators that are above the boundary operate on tuples
that are not encoded.

14

BLU Acceleration has also added SQL advances with richer function and compatibility including SQL compatibility with IBM PureData® System
for Analytics. This enables native columnar online analytical processing for deep in-database analytics, the analytic capabilities of PureData
System for Analytics, wide rows, new data types, logical character support, improved PostgreSQL compatibility, and a wide variety of additional
SQL functions being incorporated in DB2 Version 11.1

enhancements include Nested Loop Join (NLJN) support, which features a fast radix sort with superior parallelism that is able to sort
compressed and encoded data.

Other enhancements include BLU Acceleration support for IDENTITY and EXPRESSION generated columns, European Language support and
NOT LOGGED INITIALLY support for column-organized tables.

15

I’ve defined a simple set of tables:

2 Dimension tables: very simple

1 Fact table with 5 million rows of data

we have a Primary Key on Contract_Type

A PK on Customer

And a PK on CONTRACT

Contract also has Foreign Key references to the 2 Fact tables

16

1) Take a simple 3-way join query

2) Put an explain on it

3) And format the output, so we can see what the optimizer is proposing to do

17

This is pretty horrible SQL but it is intended to show a particular access path, not be as efficient as possible.

18

Explaining columnar based queries is a lot harder than explaining row-based ones; the access path often shows nothing more than TBSCAN

Q5 : V10.5 has the CTQ for both legs half way down

V11.1 has the CTQ right at the top, so has done Nested Loop Join, the Table Scan of the CUSTOMER temp table and the final sort, all in
columnar format

Note it is also a more efficient retrieval of data from CONTRACT

19

Q5 : V10.5 has the CTQ for both legs half way down

V11.1 has the CTQ right at the top, so has done Nested Loop Join, the Table Scan of the CUSTOMER temp table and the final sort, all in
columnar format

Note it is also a more efficient retrieval of data from CONTRACT

20

Establish the company type by trapping the last word of the company title

21

Q2 : SORT has moved above the CTQ boundary AND it’s now a much more efficient sort:

a radix sort is a non-comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the individual digits which
share the same significant position and value. A positional notation is required, but because integers can represent strings of characters (e.g.,
names or dates) and specially formatted floating point numbers, radix sort is not limited to integers. Radix sort dates back as far as 1887 to the
work of Herman Hollerith on tabulating machines.[1]

Basically this is enabling the highly-compressed columnar data to be sorted without unpacking it and / or using extra memory

22

https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Integer_sorting
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Significant_figures
https://en.wikipedia.org/wiki/Positional_notation
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Herman_Hollerith
https://en.wikipedia.org/wiki/Tabulating_machines
https://en.wikipedia.org/wiki/Radix_sort#cite_note-1

Asked John Hornibrook at IBM Toronto for some detail

He explained that it is an implementation of a RADIX sort call PARADIS

Very detailed technical paper of which this is the intro. Read and digest

But then you get to the notations and it becomes clear that this is beyond the comprehension of most mortals

23

So, a similar query; the conventional 3-way join in a Common Table Expression but with a WHERE clause

And a select based on that CTE with OLAP functions and aggregation but no further where clause

24

Q3 : identical set of operations, V11.1 is cheaper

Note the CTQ boundary has not been moved above the SORT or GROUP BY functions, so V11.1 is still doing these operations more efficiently,
even when the data has been returned to a row-based format

Provisos : this is db2expln output and therefore estimated costs. But it is trying to reproduce scenarios observed in actual client
implementations. Often found that the before and after upgrade figures are very different, even if the actual access path is identical.

Suggestions (Calisto Zuzarte)

(a) reloading the tables and getting better compression ?

(b) new statistics ... for example auto-runstats after extents were freed up ?

(c) FPAGES and NPAGES comparison?

25

You can get some details; you can find the index that has been built on the CONTRACT table for instance and see how much read activity there
is on that

You can find the synopsis table associated with your columnar data and see how heavily that is being used

But these are

26

Conventional 3 way join with some aggregation to get the number of contracts and the total hours

And then the select to just retrieve this years data, sorted by the number of remaining days for each customer

27

Q1 : identical set of operations, V11.1 is more expensive

This is, of course, a fudge. If you look at the table names you can see that these are all called xx_ROW and these are row based versions of the
same tables (left over from some experiments with Shadow tables).

But the point is to illustrate that row-based processing may be more expensive in V11.1

28

Gotcha? Arguably, but this is something that stumped me enough that I ended up raising a PMR

29

The result set from V10.5 is pretty much what I was after

But the result set from V11.1 includes data that I specifically requested be excluded

30

Here’s what IBM identified as the problem:

The registry variables include a setting for Oracle compatibility

31

This is cut and pasted verbatim from the PMR as written by IBM, so any spelling mistakes are as received.

The bottom line here is that, from v10.1 onwards, there was a bug in the code that appended a space to the supplied variable, when Oracle
compatibility was switched on.

This will be fixed with the APAR shown. Not sure when this will be supplied.

Although it does comes with this helpful snippet of advice

32

So, you just need to remove that registry variable and your V11.1 query will return the correct results

33

It was explained before the upgrade (from V9.7) and had an acceptable estimated cost

35

So we’ve upgraded to V11.1, rebound all the procs and this one (and I think it was the only one) goes from 4,500 timerons to 8.2 trillion.
Needless to say, this did not represent a significant performance improvement

The problem actually lay, not with V11.1, but with the way the database was managed with this particular client. REORGs and RUNSTATS were
done rarely and REBINDS never, once the “optimum” access path had been achieved. With an upgrade, of course, all packages needed to be
rebound.

36

Q3 : identical set of operations, V11.1 is cheaper

Note the CTQ boundary has not been moved above the SORT or GROUP BY functions, so V11.1 is still doing these operations more efficiently,
even when the data has been returned to a row-based format

37

So, looking at each access path side by side:

V10.5 compared to

V11.1 compared to

V11 FP 2

38

39

I’m still saying V11.1 because, although I’ve shared a few test results from our R&D server after upgrading to FP2, I haven’t yet rolled FP2 out on
any of our client sites

40

41

