#.1DUG IDUG DB2 EMEA Tech Conference O
@ Leading the DB2 User

Community since 1988

DB2 11 Performance:
BLU Hits and Misses

Mark Gillis
Triton Consulting

Session code: D15
Date: Wednesday, 5 October 2017 DB2 for LUW
Time: 17:30-18:30

#.1DUG IDUG DB2 EMEA Tech Conference O
@ Leading the DB2 User

Community since 1988

Db2 11 Performance:
BLU Hits and Misses

Mark Gillis
Triton Consulting

Session code: D15
Date: Wednesday, 5 October 2017 Db2
Time: 17:30-18:30

I DUG IDUG DB2 EMEA Tech Conference) #IDUGDB?

= Leading the DB2 User isb
Community since 1988

Intro

* Mark Gillis — Principal Consultant with Triton Consulting

* Originally DB2 on mainframe (starting in 1990 with v2.1) but mid-
range since 2000

IBM Certified Advanced Database Administrator -
IBM Certified Database Administrator - DB2 10.5

IBM Certified Designer — Cognos 10 Bl Reports
IBM Certified Developer - Cognos 10 Bl Metadata
IBM Certified Database Adminstrator- DB2 11.1 f

IBM CHAMPION
2017

* http://db2geek.triton.co.uk/ x N

. 1DUG IDUG DB2 EMEA Tech Conference
Wé Leading the DB2 User
Community since 1988

Agenda

* Brief overview of BLU technology
* Examples of workload performance in V10.5
* The benefits of V11.1 for your workload

* Examples of where the savings are

» Gotchas : where you might not get the advertised benefits

Y #1DUGDB2

That is my advertised agenda, but | might skip about a bit

The idea is to share observations gleaned from experience of using systems that have been upgraded to V11.1

It is not going to present any blinding insights into why it works, or doesn’t work

:IDUG IDUG DB2 EMEA Tech Conference wJ #IDUGDB2
L —TE
Brief overview of Columnar Tables

O el il il el el il] il]Fmll sl -l -l Bl [l
1 2 3 4 5 6 7 9 10 11 12 13 14
[Row1 [ESY A2 A3 A4 AS Al A7 A8 A9

umn
6 A10 A1l A12 Al13 Al4
B6

[Row2 [IISY B2 83 84 85 87 88 B89 810 B11 812 813 814
Il a (@] (e} c4 s (<3 o7 c8 9 c10 c11 c12 [SE} c14
T o D2 03 D4 DS 06 o7 08 D9 D10 D11 D12 D13 D14
[Rows [INISY (7] =) E4 5 6 €7 £8 9 E10 E11 E12 E13 E14
2l - 2 3 4 5 6 7 8 (2] F10 F11 F12 F13 F14
61 G2 G3 G4 G5 G6 67 T G14
H1 H2 H3 Ha HS HE H7 I H14
T 2 3 1a 15 16 7 ‘Q_I‘"‘"‘" 14
n 2 3 14 15 i 17 Columns, 114
K1 K2 K3 K4 s K6 K7 Columnil K14
7 o ©2 3 La 13 16 w7 FROM Table 114
[Row13 JVIE M2 M3 ma Ms M6 m7 WHERE M14
| Row1s [T N2 N3 N4 NS N6 N7 Column7 Between and 'Q N14
[Row1s |G 02 03 04 05 06 o7 08 09 010 o1 o012 o013 014
P1 P2 P3 P4 (3 P6 p7 P8 P9 P10 P11 P12 P13 P14
a1 Q a3 Qs as Qs a7 a8 a9 a1o a1 a1z a3 Q14
R1 R2 R3 R4 RS R6 R7 R8 R9 R10 R11 R12 R13 R14
[Row1o ST s2 s3 s4 s5 s6 s7 8 9 s10 s11 s12 s13 s14
| Row20 [n 3 T4 15 6 7 8 9 110 T11 T2 T13 T14

The advantage of column-organized tables over row-organized is that far less data needs to be
retrieved for a query to be satisfied. This is particularly aimed at OLAP / BI queries where large
volumes of data need to be processed to return the result set; often aggregated into more
compact, summarized details. With column-organized tables only the pages that contain the
columns requested by the query will be retrieved. Data skipping will further reduce the result set
by eliminating pages that do not match the predicates from the WHERE clause. And the data
will be significantly compressed, both on disk and in memory to compact the data even further.

So, here’s a (very) simple illustration of a table and its data

10

Leading the DB2 User
Community since 1988

elDUG

Brief overview of Columnar Tables

Row1
Row2
Row3
Row4
Row5

Bl B2
c1 (o]
D1 D2
E1 E2
F1 F2

Gl G2 G3 G4 G5 G6 G7 G8 G9 G10
WL W2 W3 W& W5 W6 | W7 W8 | MO | HI0 A1l WL

B3
a
D3
E3
F3

B4
c4
D4
E4
4

BS B6
(a1 6
D5 D6
ES E6
F5 F6

B7
T
o7
E?
F7

B3
&)
D8
E8
F8

IDUG DB2 EMEA Tech Conference
Lisbon Portugal | October 2017

¥ #1DUGDB2

SELECT
Columnl,
ColumnSs,
Columnll

FROM Table

L\:Iumn Culumn CDlumn (olumn (ulumn column column Co\umn E WHERE

Ay
B9
o]
D9
E9
[2:]

Column? Betmn 'H7' and 'Q7°'
iz

Bau
B10O
c1o
D10
E10
F10

RIS Aiw
B11l B12 B13 B14
c11 €12 13 c14
D11 D12 D13 D14
E11 E12 E13 E14
F11 F12 F13 F14

Row17 ______________

Row18
Row19
Row20

R2
51 52
I T2

53
T3

54
T4

R6
55 56
15 T6

57
ird

58
8

R9
s9
T9

R10
510
T10

R11 R12 R13 R14
511 512 513 514
T11 T12 13 T14

With a row-based table the ‘area’ of data that the query would have to access is shown by the

shaded area

11

. 1DUG
Vé@ Leading the DB2 User
Community since 1988

Brief overview of Columnar Tables

== | v e s =i
1 2 4 5 6 7
Al A2 A3 A4 A5 A6 A7

Row1
Row2
Row3
Rowd
RowS
Row6
Row7
Row8
Row9
Row10
Row11l
Row12
Row13
Row14
Row15
Row16
Row17
Row18
Row19
Row20

R
8 9
A8
B8

IDUG DB2 EMEA Tech Conference

Columnll

FROM Table
WHERE
Column?7
(€] 10
D9 D10
E9 E10
F9 F10
G9 G10
H9 H10
19 110
19 110
K9 K10
(L] L10
M9 M10
N9 N10
09 010
P9 P10
Q9 Q1o
R9 R10
$9 510
9 T10

Between
(&85
D11
E11
F11
G11
H11
ni
1
K11
(S5
M11
N11
o11
P11
Qu
R11
$11
i1

12
D12

F12
G12
H12
112

K12
2

N12
012
P12
Q12
R12
$12
T2

and

[li
D13
F13
613

H13
1n3

K13
(SE]

N13
013
P13
Qi3
R13
513
T13

14
D14

F14
G1l4
H14
114

K14
L4
M14
N14
014
P14
Q14
R14
S14
T14

Y #1DUGDB2

But if it was column-organized, the same query would access the shaded area shown

Bearing in mind that besides the reduced number of pages that are being retrieved, the column-
organized data is compressed using routines that can offer 10-fold improvements over pre 10.5
algorithms, and that the database engine will be taking advantage of hardware capabilities (e.g.
Parallel vector processing, multi-core parallelism and single instruction, multiple data (SIMD)
parallelism) to further improve the data processing speed, and you can anticipate very rapid
analytical processing of large volumes of data.

12

IDUG DB2 EMEA Tech Conference

#.1DUG

"%:‘g Leading the DB2 User
Community since 1988

Brief overview of Columnar Tables

SELECT

Columnl,
| [o [[o [[o

Columnll
Row1 Al A2 A3 A4 AS A6 A7 BEE pock Tanie
Row2 B1 B2 83 84 B5 B6 87 L J—
Row3 a Q a3 c4 s 6 (] 8 Column7 Between
Row4 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
RowS 31 £2 £3 E4 £5 £6 £7 £8 £9 E10
Rowb F1 (7} 3 F4 F5 F6 7 8 Fo F10
Row7 G1 G2 G3 G4 G5 G6 67 G8 69 610
Row8 & H2 H3 Ha [E H6 ® H8 HO H10
Rowd & 2 3 4 : 16 i 18 19 110
Row10 & j) 13 4 s 16 18 19 110
Rowll = ° K2 K3 K& Kol K8 K9 K10
Row12 2 [E} 14 16 18 19 110
Row13 M2 M3 M4 M6 M8 M9 M10
Row14 N2 N3 N4 N6 N8 N9 N10
Row15 02 03 04 06 08 09 010
Row16 P2 P3 P4 P6 P8 P9 P10
Row17 o) Q3 Q4 Q6 Q8 Q9 Q10
Row18 R1 R2 R3 R4 RS R6 R7 R8 R9 R10
Row19 s1 s2 s3 s4 S5 6 s7 s8 59 s10
Row20 m n 3 T4 15 6 7 8 9 T10

D11
E11
F11
G11

FELCEERLEL]

R11
S11
Ti1

and

: D12

E12
F12
G12
H12
112
J12
K12
112
M12
N12
012
P12
Q12
R12
$12
T12

Y #1DUGDB2

13
13
D13
E13
F13
G13
H13
113
J3
K13
L3
M13
N13
013
P13
Q13
R13
$13
T13

Al4
B14
C14
D14
E14
F14

G14
H14
114

J14

K14
L14
Mm14
N14
014
P14
Q14
R14
S14
T14

And, bearing in mind that besides the reduced number of pages that are being retrieved, the
column-organized data is compressed using routines that can offer 10-fold improvements over
pre 10.5 algorithms, and that the database engine will be taking advantage of hardware
capabilities (e.g. Parallel vector processing, multi-core parallelism and single instruction,
multiple data (SIMD) parallelism) to further improve the data processing speed, and you can

anticipate very rapid analytical processing of large volumes of data.

13

:IDUG IDUG DB2 EMEA Tech Conference wJ #IDUGDB2
"%:‘g Leading the DB2 User
Community since 1988

The CTQ Boundary

The CTQ plan operator represents the transition between column-organized data
processing and row-organized data processing.

TBSCAN
(3)
9912.68
4528
10
SORT
) Keep it columnar as long as possible
9912.68
4528
|
11.6667
crg

(95

9912.67
SFILTER GTBSCAN 4528
645416 12737 |

The columnar table queue : The CTQ operator represents a boundary within the DB2® query engine. Operators that appear below the

boundary process data as compressed column-organized vectors and tuples, whereas operators that are above the boundary operate on tuples
that are not encoded.

14

M. 1DUG IDUG DB2 EMEA Tech Conference ¥ HIDUGDE?
%/é Leading the DB2 User
Community since 1988

Advertized Benefits of V11.1

OLAP operations

NLJOIN

Sorting

IDENTITY and EXPRESSION columns
NOT LOGGED INITIALLY

BLU Acceleration has also added SQL advances with richer function and compatibility including SQL compatibility with IBM PureData® System
for Analytics. This enables native columnar online analytical processing for deep in-database analytics, the analytic capabilities of PureData
System for Analytics, wide rows, new data types, logical character support, improved PostgreSQL compatibility, and a wide variety of additional
SQL functions being incorporated in DB2 Version 11.1

enhancements include Nested Loop Join (NLIN) support, which features a fast radix sort with superior parallelism that is able to sort
compressed and encoded data.

Other enhancements include BLU Acceleration support for IDENTITY and EXPRESSION generated columns, European Language support and
NOT LOGGED INITIALLY support for column-organized tables.

15

'ﬁ_ IDUG IDUG DB2 EMEA Tech Conference

L7 Leading the DB2 User
Community since 1988

Basic scenario

* CONTRACT_TYPE a reference table with 3 rows
¢ CUSTOMER another reference table, but with 2,615 rows
¢« CONTRACT a fact table with 5,000,000 rows of randomly

generated data

I’ve defined a simple set of tables:

2 Dimension tables: very simple

1 Fact table with 5 million rows of data

we have a Primary Key on Contract Type
A PK on Customer
And a PK on CONTRACT

Contract also has Foreign Key references to the 2 Fact tables

16

:IDUG IDUG DB2 EMEA Tech Conference wJ #IDUGDB2

Leading the DB2 User
Community since 1988

Test Case

explain plan with snapshot for
SELECT
Name Customer
.Contract_Type
, SUM (Hours) Total_Hours
FROM
Contract
inner join
Customer on Contract.Customer ID = Customer.Customer ID
inner join
Contract_Type on Contract.Contract_Type ID = Contract_Type.Contract_Type ID
GROUP BY
Name
.Contract_Type
tdb2exfmt -d CONTRACT -e DB2I1054 -o Query 1 Shadow_ EXPOO76W.explain -u db2il054

17

1)
2)
3)

Take a simple 3-way join query
Put an explain on it

And format the output, so we can see what the optimizer is proposing to do

17

. 1DUG IDUG DB2 EMEA Tech Conference

L7 Leading the DB2 User
Community since 1988

Working as advertised

WITH Contract_Agg AS
(
SELECT

Contra

ng_in_Year,

c Contracts,

SUM(Hours) AS al_Hours ,
rank() over (partition by Contract_Type order by YEAR(End Date)) rn

FROM

Contract

INNER JOIN C

er
WHERE Ending_in_Year BETWEEN AND
AND SUBSTR de,”,1) =
otal_Hours DESC
FETCH FIRST ROWS ONLY

Y #1DUGDB2

This is pretty horrible SQL but it is intended to show a particular access path, not be as efficient as possible.

18

:IDUG IDUG DB2 EMEA Tech Conference wJ #IDUGDB2

YU Leading the DB2 User
Community since 1988

Working as advertised

V10.5

«CONTRACT
CONTRACT

«CONTRACT _TYPE

CONTRACT CONTRACT CONTRACT

#«:CONTRACT I I-'CONTRACT_TYPI l
19

Explaining columnar based queries is a lot harder than explaining row-based ones; the access path often shows nothing more than TBSCAN

Q5 : V10.5 has the CTQ for both legs half way down

V11.1 has the CTQ right at the top, so has done Nested Loop Join, the Table Scan of the CUSTOMER temp table and the final sort, all in
columnar format

Note it is also a more efficient retrieval of data from CONTRACT

19

IDUG

YU Leading the DB2 User
Community since 1988

W
V10.5

GSRETUR]
10.193 60

IDUG DB2 EMEA Tech Conference

Y #1DUGDB2

V11.1

«CONTRACT #CONTRACT_TYPE
CONTRACT CONTRACT

« CONTRACT_TYPE
CONTRACT

Q5 : V10.5 has the CTQ for both legs half way down

V11.1 has the CTQ right at the top, so has done Nested Loop Join, the Table Scan of the CUSTOMER temp table and the final sort, all in

columnar format

Note it is also a more efficient retrieval of data from CONTRACT

20

:IDUG IDUG DB2 EMEA Tech Conference
% Leading the DB2 User Lisbon Pc gal)ctober 2017
Community since 1988

V11.1 better than V10.5 (Sorting)

WITH Contracts_CTE AS
(
SELECT
Contract_Type,
RTRIM(SUBSTR (Name, locate(' ', name) + |)) Business_Type ,

Start_Date,
Contract_Length
FROM
Contract
inner join
Customer on Contract.Customer_ ID = Customer.Customer_ ID
inner join
Contract_Type on Contract.Contract_Type_ID = Contract_Type.Contract_Type_ID

SELECT
Business_Type,
Contract_Type,

AVG (CONTRACT_LENGTH) Average_Contract_Length,
YEAR (Start_Date) Start_Year

FROM Contracts_CTE

WHERE

CORL LA e

e ¢ - -
AND Business_Type NOT IN ('

GROUP BY Business_Type, Contract_Type, YEAR(Start_ Date)
ORDER by Start_year

FETCH FIRST ROWS ONLY

Y #DUGDB2

21

Establish the company type by trapping the last word of the company title

21

. 1DUG IDUG DB2 EMEA Tech Conference oy #1DUGDB2
Leading the DB2 User Lisbon P ’a) 2017
Community since 1988

V11.1 better than V10.5 (Sorting)

V10.5

V1l1.1

@ RETURD
937923

#:CONTRACT
CONTRACT

«CONTRACT_TYPE
CONTRACT

Q2 : SORT has moved above the CTQ boundary AND it’s now a much more efficient sort:

a radix sort is a non-comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the individual digits which
share the same significant position and value. A positional notation is required, but because integers can represent strings of characters (e.g.,
names or dates) and specially formatted floating point numbers, radix sort is not limited to integers. Radix sort dates back as far as 1887 to the
work of Herman Hollerith on tabulating machines.™"!

Basically this is enabling the highly-compressed columnar data to be sorted without unpacking it and / or using extra memory

22

https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Integer_sorting
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Significant_figures
https://en.wikipedia.org/wiki/Positional_notation
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Herman_Hollerith
https://en.wikipedia.org/wiki/Tabulating_machines
https://en.wikipedia.org/wiki/Radix_sort#cite_note-1

. 1DUG

Leading the DB2 User
Community since 1988

Paradis Sort

Lisbon

PARADIS: An Efficieni
for In-place F

In-place radix sort is a popular distributic
algorithm for short numeric or string keys
run-time and constant memory complexity
cient parallelization of in-place radix sort i
ing for two reasons. First, the initial pha
elements into buckets suffers read-write de
ent in its in-place nature. Secondly, load |
recursive application of the algorithm to the
ets is difficult when the buckets are of ver
which happens for skewed distributions of

IDUG DB2 EMEA Tech Conference

W #IDUGDB2
Table 1: Notations in this paper

N set of array indices {0, 1, ..., [NT— 1}
d[N] the array of size [N] to be sorted
n,h,t |array index € N
P set of processor indices {0, 1,...,|P| — 1}
P.q processor index € P
P0,P1....|shorthand for “processor 07, “processor 17, ...
B set of bucket indices {0, 1, ..., [B] — 1}
i, 7,k bucket index € B
L set of recursion levels {0, 1,...,[L] — 1}
l recursion level € £
b(v) index of the bucket where element v should belong
gh; head pointer of bucket 7
gt; tail pointer of bucket 7
ph? head pointer of the stripe for processor p in bucket 7
pt? tail pointer of the stripe for processor p in bucket i
M; n| ghi < n < gt;}, i.e., the indices of bucket i
M7 n| ph? < n < pt’'}, i.e., the indices of stripe p, i
C; M;| = gt; — gh;, i.e., size of bucket z
Cc? MP| = pt? — ph? | i.e, size of stripe p, i
Ci(k) {n € M;[b(d[n]) = k}]
i.e. the number elements in M; belonging to Mj
CP(k) [l{n € M| b(d[n]) = k}|

i.e. the number elements in J\/!f belonging to My,

Asked John Hornibrook at IBM Toronto for some detail

He explained that it is an implementation of a RADIX sort call PARADIS

Very detailed technical paper of which this is the intro. Read and digest

But then you get to the notations and it becomes clear that this is beyond the comprehension of most mortals

23

. 1DUG IDUG D82

5D

YU Leading the DB2 User
Community since 1988

V11.1 better than V10.5 (it just is)

EMEA Tech Conference 3 #IDUGDB2

Pc

EWITH Remaining_Hours As (

SELECT
Name Customer,
Contract_Number ,
Contract_Type,

inner join
Contract_Type on Contract.Contract_Type_ID = Con
WHERE
End_date > CURRENT DATE
AND Contract Number BETWEEN AND
AND SUBSTR (postcode,!,!) = 'H'
)

MONTH (End_Date) AS Ending_in_Month,
YEAR (End_Date) AS Ending_in_Year,
end_date,
Smallint (Days (End_Date) - Days (CURRENT DATE)) as Days_Remaining,
Hours
FROM
Contract
inner join
Customer on Contract.Customer_ ID = Customer

SELECT
Customer,
Contract_Type,
COUNT (Contract_Number) AS Number of Contracts,
Ending_in_Month,
Ending_in_Year,
SUM (Hours)
FROM Remaining_ Hours
GROUP BY
Customer, Contract_Type, Ending_in Month, Ending_in_ Year
ORDER BY ¢,5,°,

So, a similar query; the conventional 3-way join in a Common Table Expression but with a WHERE clause

And a select based on that CTE with OLAP functions and aggregation but no further where clause

24

:IDUG IDUG DB2 EMEA Tech Conference ¥ #IDUGDB2

Y% Leading the DB2 User
Community since 1988

V11.1 better than V10.5 (it just is)

V10.5 V1l1.1

«CONTRACT_TYPE
CONTRACT

25

Q3 : identical set of operations, V11.1 is cheaper

Note the CTQ boundary has not been moved above the SORT or GROUP BY functions, so V11.1 is still doing these operations more efficiently,
even when the data has been returned to a row-based format

Provisos : this is db2expln output and therefore estimated costs. But it is trying to reproduce scenarios observed in actual client
implementations. Often found that the before and after upgrade figures are very different, even if the actual access path is identical.

Suggestions (Calisto Zuzarte)

(a) reloading the tables and getting better compression ?

(b) new statistics ... for example auto-runstats after extents were freed up ?
(c) FPAGES and NPAGES comparison?

25

. 1DUG IDUG DBZ EMEA Tech Conference
ﬂ Leading the DB2 User Lis Portugal | Oct 2
Community since 1988

Examining columnar table scans

MON_GET_INDEX

Index | Logical
Q Type | Table Scans | reads
a1l Col CONTRACT_BLU o [3004

o G 0

Q1 Col SYN140625033039072302_CONTRACT_BLU

MON_GET_TABLE

Logical | Num
Physical Logical | Index | Cols Logical | Physi
Qt: Table Logical Reads | Reads Pages Pgs Refd Reads Reads Scans

Rnw CONTRACT 5204973 23520 5354 7987 33 1995
RoX CONTRACT 65 5217741 25468 5354 7987 39 12768 1948
cu ICol| CONTRACT_BLU 3 5533 265 1316 2886 13 _—-
a1 JEBII SYN140625033039072302_CONTRACT_BLU o 7 2 60 4 o e e 0

26

You can get some details; you can find the index that has been built on the CONTRACT table for instance and see how much read activity there

is on that

You can find the synopsis table associated with your columnar data and see how heavily that is being used

But these are

26

M. IDUG
Vé Leading the DB2 User
Community since 1988

IDUG DB2 EMEA Tech Conference

WITH Contracts_CTE AS

2
SELECT

End Date,

SUM (Hours)
FROM

Contract

inner join

Customer

inner join

GROUP BY Name,
o)

Name AS Custom
Contract_Type,

COUNT (Contract

Contract_Type

Con

SELECT
Customer,
Contract_Type,
Number of Contracts,
YEAR (End_Date) AS Ending_in Year,
MONTH (End_Date) AS Ending_in Month,
CASE WHEN End Date > CURRENT DATE
THEN Smallint(Days(End Date) - Days (CURRENT DATE))
ELSE
end as Days Remaining,
Total_ Hours
FROM Contracts CTE
WHERE YEAR (End Date)=
ORDER BY Days_Remaining DESC
FETCH FIRST ROWS ONLY

Y #1DUGDB2

27

Conventional 3 way join with some aggregation to get the number of contracts and the total hours

And then the select to just retrieve this years data, sorted by the number of remaining days for each customer

27

IDUG DB2 EMEA Tech Conference ’ #IDUGDB2

Community since 1988

Expected benefits not appearing

V10.5

'CONTRACT_TYPE_ROW | A+CUSTOMER_PCSTCODE_AREA
CONTRACT

«:CONTRACT_ROW | |« CONTRACT_TYPE_ROW +CUSTOMER_POSTCODE_AREA'
CONTRACT CONTRACT CONTRACT

28

Q1 : identical set of operations, V11.1 is more expensive

This is, of course, a fudge. If you look at the table names you can see that these are all called xx_ROW and these are row based versions of the
same tables (left over from some experiments with Shadow tables).

But the point is to illustrate that row-based processing may be more expensive in V11.1

28

:IDUG IDUG DB2 EMEA Tech Conference

Y% Leading the DB2 User
Community since 1988

Gotcha

WITH Contracts_CTE AS
(
SELECT
Contract_Type,
RTRIM(SUBSTR (Name, locate(' ', name) +)) Business_Type ,
Start_Date,
Contract_Length

FROM
Contract
inner join
Customer on Contract.Customer ID = Customer.Customer ID
inner join
Contract_Type on Contract.Contract_Type_ ID = Contract_Type.Contract_Type_ID

)

SELECT
Business_Type,
Contract_Type,

AVG (CONTRACT_LENGTH) Average_Contract_Length,
YEAR (Start_Date) Start_Year

FROM Contracts_CTE

WHERE

Contract_Type =
AND Business_Type NOT IN (' P 1)

Y #1DUGDB2

29

Gotcha? Arguably, but this is something that stumped me enough that | ended up raising a PMR

29

IDUG DB2 EMEA Tech Conference

\/710.5 SELECT .
Business_Type, \/ l l.l

Contract_Type,
AVG (CONTRACT_LENGTH) Contract_Length,
YEAR (Start_Date)

FROM Contracts_|

WHERE
Contract_Type =

AND Business Type NOT IN ('

Marketing
Promotio
ic

Building
Construction
struction

30

The result set from V10.5 is pretty much what | was after

But the result set from V11.1 includes data that | specifically requested be excluded

30

G IDUG DB2 EMEA Tech Conference

DB2 User

since 1988

Gotcha

Here’s what IBM identified as the problem:

The registry variables include a setting for Oracle compatibility

31

:IDUG IDUG DB2 EMEA Tech Conference ¥ #IDUGDB2
@ Leading the DB2 User
Community since 1988

PMR 15263,999,866

The back end engineer has created the following APAR

IT19976
ADDITIONAL SPACE IS ADDED TO "IN" CLASUE IN TABLE ORGNIZED BY

COLUMN

Local Fix:

Rewrite the query to avoid this condition.

32

This is cut and pasted verbatim from the PMR as written by IBM, so any spelling mistakes are as received.

The bottom line here is that, from v10.1 onwards, there was a bug in the code that appended a space to the supplied variable, when Oracle
compatibility was switched on.

This will be fixed with the APAR shown. Not sure when this will be supplied.
Although it does comes with this helpful snippet of advice

32

IDUG IDUG DB2 EMEA Tech Conference

Leading the DB2 User

Com: y since 1988

Gotcha

So, you just need to remove that registry variable and your V11.1 query will return the correct results

33

:IDUG IDUG DB2 EMEA Tech Conference

Leading the DB2 User
Community since 1988

Horror story

P s

Y #1DUGDB2

DB2 Universal Databas¢ Version 9.7, 9622-044 (c) Copyright IBM Corp. 1991, 2009
Licensed Material - P of IBM

IBM DB2 Universal Database SQL and XQUERY Explain Tool

*kkkkkkkkkkkkkkkkx*x*x* PACKAGE *****xxxkkkhkhxkrdkhhxhdhhhhxrhhhhrxrhhhhxxx

Section Code Page = 819

Estimated Cost = 4846.043457
Estimated Cardinality = 0.000137

35

It was explained before the upgrade (from V9.7) and had an acceptable estimated cost

35

%

Y #1DUGDB2

:IDUG IDUG DB2 EMEA Tech Conference
bg Leading the DB2 User
Community since 1988
Horror story
DB2 Universal Database Version 11.1, 5622-044 (c) Copyright IBM Corp. 1991, 2015

Licensed Material - Program Property of IBM
IBM DB2 Universal Database SQL and XQUERY Explain Tool

Section Code Page = 819

Estimated Cost = 8215343923200.000000
Estimated Cardinality = 0.805647

36

So we've upgraded to V11.1, rebound all the procs and this one (and | think it was the only one) goes from 4,500 timerons to 8.2 trillion.

Needless to say, this did not represent a significant performance improvement

The problem actually lay, not with V11.1, but with the way the database was managed with this particular client. REORGs and RUNSTATS were
done rarely and REBINDS never, once the “optimum” access path had been achieved. With an upgrade, of course, all packages needed to be

rebound.

36

. IDUG IDUG DB2 EMEA Tech Conference Wy #IDUGDB?
YU Leading the DB2 User Lisbon Pc zal)ctol 2017
Community since 1988

V11.1 better than V10.5 (it just is)

V10.5 V11.1.2.2

37

Q3 : identical set of operations, V11.1 is cheaper

Note the CTQ boundary has not been moved above the SORT or GROUP BY functions, so V11.1 is still doing these operations more efficiently,
even when the data has been returned to a row-based format

37

. 1DUG

Leading the DB2 User
Community since 1988

IDUG DB2 EMEA Tech Conference

Lisbon Portugal

October 2017

V11.1 better than V10.5 (it just is)

Yy #1DUGDB2

V11.1.2.2

38

So, looking at each access path side by side:
V10.5 compared to

V11.1 compared to

V11FP2

38

| D U G IDUG DB2 EMEA Tech Conference

& Leading the D82 User
Community since 1988

Comparison across the workload

Query 11111 FP2_________ Dbiimprovement |

Y #1DUGDB2

39

39

I DUG IDUG DB2 EMEA Tech Conference) #IDUGDB?

= Leading the DB2 User isb
Community since 1988

Summary

» There are significant performance improvements to be had by
upgrading to V11.1

Over 95% of code we have monitored has improved after the upgrade, with no
changes to code or configuration: improvements were straight “out of the box”

* Most improvements to be had are in the column-organized data
Row-based should not suffer, unless your database is configured specifically for
ANALYTICS

* Any performance degradation is liable to be due to ‘time-bombs’
Record all stats, config settings and access paths before and after the upgrade, in
order to help finger-pointing at the new release

40

I'm still saying V11.1 because, although I’'ve shared a few test results from our R&D server after upgrading to FP2, | haven’t yet rolled FP2 out on
any of our client sites

40

2 1DUG IDUG DB2 EMEA Tech Conference
W/é% Leading the DB2 User

Community since 1988

Mark Gillis

Triton Consulting
Mark.Gillis@Triton.co.uk

Session code: D15

¥ #IDUGDB2

Please fill out your session
evaluation before leaving!

41

